
www.manaraa.com

Communications of the Association for Information Systems

Volume 16 Article 37

November 2005

Open Source: Concepts, Benefits, and Challenges
Mohammad AlMarzouq
Clemson University, malmarz@clemson.edu

Li Zheng
Clemson University, liz@clemson.edu

Guang Rong
Clemson University, grong@clemson.edu

Varun Grover
Clemson University, vgrover@uark.edu

Follow this and additional works at: https://aisel.aisnet.org/cais

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Communications of the
Association for Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
AlMarzouq, M., Zheng, L., Rong, G., & Grover, V. (2005). Open Source: Concepts, Benefits, and Challenges. Communications of the
Association for Information Systems, 16, pp-pp. https://doi.org/10.17705/1CAIS.01637

https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol16%2Fiss1%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol16?utm_source=aisel.aisnet.org%2Fcais%2Fvol16%2Fiss1%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol16/iss1/37?utm_source=aisel.aisnet.org%2Fcais%2Fvol16%2Fiss1%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol16%2Fiss1%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17705/1CAIS.01637
mailto:elibrary@aisnet.org%3E

www.manaraa.com

756 Communications of the Association for Information Systems (Volume 16, 2005) 756-784

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

OPEN SOURCE:
CONCEPTS, BENEFITS, AND CHALLENGES

Mohammad AlMarzouq
Li Zheng
Guang Rong
Varun Grover
Department of Management
Clemson University
vgrover@clemson.edu

ABSTRACT

With the emergence of free and open source software (F/OSS) projects (e.g. Linux) as serious
contenders to well-established proprietary software, advocates of F/OSS are quick to generalize
the superiority of this approach to software development. On the other hand, some well-
established software development firms view F/OSS as a threat and vociferously refute the
claims of F/OSS advocates. This article represents a tutorial on F/OSS that tries objectively to
identify and present open source software’s concepts, benefits, and challenges. From our point
of view, F/OSS is more than just software. We conceptualize it as an IPO system that consists of
the license as the boundary of the system, the community that provides the input, the
development process, and the software as the output.

After describing the evolution and definition of F/OSS, we identify three approaches to benefiting
from F/OSS that center on (1) the software, (2) the community, and (3) the license respectively.
Each approach is fit for a specific situation and provides a unique set of benefits and challenges.
We further illustrate our points by refuting common misconceptions associated with F/OSS based
upon our conceptual framework.

KEYWORDS: open source, free source, tutorial, system, community, motivation, software
development, benefits, challenges, F/OSS, OSS.

I. INTRODUCTION

The terms free 1 and open source2 refer to software that anyone can freely redistribute, analyze,
and modify while complying with certain criteria. With companies looking for new ways for

1 Definition of Free software: http://www.fsf.org/licensing/essays/free-sw.html
2 Definition of Open Source: http://www.opensource.org/docs/definition.php

www.manaraa.com

Communications of the Association for Information Systems (Volume 16, 2005) 505-521 757

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

reducing IT spending, free and open source software (F/OSS) emerged as a promising solution
for reducing costs. F/OSS proponents claim that it can offer a free alternative to proprietary
software with superior quality when it comes to features, reliability, and security [Grantham, 1999,
Raymond, 1999c, Surman and Diceman, 2004, Wheeler, 2005]. Proponents also assert that
F/OSS can be a means for reducing product development costs by incorporating F/OSS
components into a product or outsourcing parts of the product development to F/OSS
communities [Grantham, 1999]. On the other hand, opponents of F/OSS solutions argue that
open source software (OSS) does not come with a free price tag and the total cost of ownership
(TCO) might actually be higher than commercial solutions when other costs such as staff training,
customization and implementation are factored in [Hickman, 2004, Surman and Diceman, 2004].
Both Microsoft and Sun conducted studies showing conflicting results about the total cost of
ownership of proprietary and F/OSS software [Wheeler, 2005]. The debate regarding whether
F/OSS reduces costs is still ongoing. In reality, both F/OSS and proprietary approaches can yield
different benefits in specific conditions [Levesque, 2004, Williams et al., 2005].

The focus of this paper is to provide a tutorial on F/OSS. The purpose of this paper is not to
propose that the F/OSS approach is better or worse than the proprietary one, but to inform
readers who seek to learn more about F/OSS and help managers make a more informed decision
about F/OSS solutions.

In this tutorial, we first contextualize F/OSS by reviewing its origin and evolution (Section II). In
Section III,we attempt to conceptualize F/OSS and its components . We then identify three
approaches through which companies can harness F/OSS. The benefits and challenges
associated with each approach are discussed. We conclude by examining commonly held
misconceptions about F/OSS in light of the tutorial.

II. ORIGINS AND EVOLUTION OF OPEN SOURCE

The idea of F/OSS is not new. F/OSS dates back to the origins of the computing industry in
1950s. All software was free back then, and most of it was open. People in the field perceived
computer hardware and software as highly intertwined. They were not able to see the explicit
market value of software. Free and open software dominated the industry until mid-1960s. IBM
then unbundled its software and hardware leading to a significant marketplace for software in the
1970s [Glass, 2004].

The new wave of F/OSS discussed here, arguably originated in the late 1990s. It is different in
nature from traditional open software. Current F/OSS emphasizes open standards, shared source
code, and collaborative development behind the software [O'Reilly, 1999]. The ideals of F/OSS
are firmly rooted in the Hacker Ethic, or Hackerdom. Hackers are programmers who enjoy
exploring the details of programming systems [Johnson, 2001]. They undertake a project to fulfill
constructive goals and their intense creative interests [Johnson, 2001]. The beginnings of the
hacker culture dates back to 1961. At that time, MIT’s AI Lab was the first software-sharing
community. The cultures of programmers in the early years and the following Hackerdom
eventually evolved into today's free and open-source cultures [Raymond, 1999a].

The Department of Defense designed and built ARPAnet in the late 1960's as an experiment in
digital communication. ARPAnet greatly facilitated the spread of hackerdom. After the initial
launch, it quickly grew and started to link hundreds of universities, defense contractors, and
research laboratories. It provided a platform for the free exchange of information with
unprecedented speed and flexibility. Meanwhile, this network brought together hackers from all
over the U.S. in a critical mass. This phenomenon led to the rise of networked groups that
enjoyed collaborative effort. Their early efforts led to informal principles and guidelines for
distributed software development [Raymond, 1999a].

During the same time, a Bell Labs hacker named Ken Thompson invented UNIX. UNIX was
originally licensed to universities for a minimal fee. UNIX resulted in an explosion of creativity and
efforts as programmers built on each other's work. Richard Stallman, who was a participant in

www.manaraa.com

758 Communications of the Association for Information Systems (Volume 16, 2005) 756-784

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

MIT's Artificial Intelligence Lab and believed strongly in the Hacker Ethic, created the Free
Software Foundation in 1985, an organization that promotes the development and use of free
software. Hundreds of programmers created new, freely available versions of all major UNIX
utility programs. UNIX, as one of the most widely known shared projects, offered solutions to
networking problems and contributed to the ongoing growth of the Internet [Raymond, 1999a].

By the early 1990's, reduced costs and increased performance of personal computers together
with the rapid growth of the World Wide Web all contributed to the growth of online development
communities. Projects such as Linux and Apache became immensely successful in terms of
project contributions. Following the success of these projects, in 1997, Eric Raymond [Raymond,
1999c] presented his seminal piece “The Cathedral and The Bazaar”3. He contrasted two
different styles of software development, "the cathedral model of the commercial world and the
bazaar model of the Linux world." The former is tightly organized and centrally planned. In
contrast, Linux development resembles "a great babbling bazaar of differing agendas and
approaches." [Raymond, 1999c]. The paper (and the later book version) acted as a catalyst,
drawing great attention and discussion to F/OSS. It played a key role in justifying the decision of
Netscape’s CEO, Jim Barksdale, to release the source code for Netscape Navigator in 1998.
Netscape then invited Eric Raymond to help them develop what was to become the Mozilla Public
License (MPL)4 and the Mozilla Organization [Raymond, 2000].5

On February 3rd, 1998 a brain storming session was convened in VA research offices in Mountain
View, California to discuss the future of this movement. Participants Todd Anderson, Chris
Peterson (of the Foresight Institute), John "maddog" Hall and Larry Augustin (both of Linux
International), Sam Ockman (of the Silicon Valley Linux User's Group), and Eric Raymond,
agreed on the need for a marketing campaign to win the support of Fortune 500 companies to
ensure the long term survival of the movement. However, the participants acknowledged that the
term free software did more harm than good. They argued that it kept Fortune 500 CIO’s away
because they associated the term with hostility towards intellectual rights and communism.
Further, the term free does not fit very well in the business world. Also, the ambiguity of the term
free and the fact that most such software was distributed with no cost, added to the confusion
[Raymond, 2000]. Christine Peterson of the Foresight Institute coined the Open Source (OS)
label that is synonymous with the bazaar metaphor and the Open Source Initiative organization
(OSI) was established by the people present at that meeting6.

Some opposition to this movement however surfaced. Richard Stallman of the Free Software
Foundation (FSF) thought that the term Open Source was not pure enough.7 Furthermore, the
term might be confusing because it emphasizes the access to source code and not the freedom
of users. This argument reflects the differing beliefs of FSF and OSI, which promote the same
development principles but disagree on the ultimate goal of the movement. FSF decided to keep
the free software label to reflect its belief that users should be given the freedom to do whatever it
is they wish with their software. FSF is vocal in expressing the user’s right for this freedom. OSI,
although might agree with these principals, chose to promote this freedom in a more subtle
manner. They might not express the user’s right for this freedom, but they promote it as a means
of producing better software and trying to persuade the corporate world to buy into this concept8.
Because of this difference, we refer to the group of software that adheres to the OSI and FSF
principles as Free and Open Source Software (F/OSS).

3 An update in 2000 is available on the web at http://www.catb.org/~esr/ writings/cathedral-bazaar/hacker-
revenge/
4 F/OSS licenses are explained in Section III
5 http://www.mozilla.org
6 http://www.opensource.org/docs/history.html
7 http://www.catb.org/~esr/open-source.html
8 For more information on the difference between OSI and FSF consult:
OSI perspective: http://opensource.org/advocacy/free-notfree.php
FSF perspective: http://www.fsf.org/licensing/essays/free-software-for-freedom.html

www.manaraa.com

Communications of the Association for Information Systems (Volume 16, 2005) 505-521 759

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

F/OSS gained further credibility when giants in the IT industry, such as Apple, IBM, and Sun,
started adopting F/OSS solutions in the following years [West, 2003]. Google, NASA, and many
others now choose to deploy F/OSS.9 F/OSS (such as Bind, Sendmail, and Apache) and other,
proprietary software originally developed by the F/OSS community are the heart of the Internet.
Apache, for example, became the most popular web server on the Internet in April 1996. The
February 2005 Netcraft Web Server Survey10 found that more than 68% of the web sites on the
Internet are using Apache, thus making it more widely used than all other web servers combined
[Feller and Fitzgerald, 2002].

 III. THE OPEN SOURCE SYSTEM

F/OSS is more than just software or source code [Hein, 2004]. Four components constitute
F/OSS. These are:

1. the license (What signifies a software as F/OSS),
2. the community (why the people get involved),
3. the development process (how F/OSS is conducted), and
4. the software itself (what the product entails).

Collectively, these four components provide a reasonable understanding of F/OSS solutions.
Therefore, in order to better evaluate and use F/OSS, it is useful to understand the interplay of
the four components as a whole.

To provide a comprehensive understanding of F/OSS, we conceptualized the components and
the interplay between them as an Input-Process-Output (IPO) system. For IPO systems, output is
but a single part of the whole system. The quality of the output depends on the system as a
whole. Therefore, F/OSS is only as good as the process, the community, and the license [Orr,
1998].

The license legitimizes the whole system and signifies it as an F/OSS system. It is the means
used to protect the intellectual rights of the contributors and to ensure the sustainability of the
system. The community provides all necessary input such as knowledge, skill, time, and effort to
produce the final product. The F/OSS development process enables the collaboration of efforts
(inputs) to produce the software (output).

Typically, IPO systems involve two orders of feedback loops.

• The first order feedback loop focuses on improving the development process to ensure
that the output meets the pre-defined software and quality requirements.

• The second order feedback loop focuses on how to update the pre-defined requirements
so the system can cope with changes in external environment.

These two orders of feedbacks enable the F/OSS as an IPO system to work effectively and
evolve dynamically. Figure 1 presents an overall picture of F/OSS as an IPO system and
illustrates the two orders of feedback. A discussion of each component follows. We start with the
license as the overall boundary of the system. We then discuss the I (community), P
(development process), and O (software).

9 http://www.mysql.com/customers/
10 http://www.netcraft.com

www.manaraa.com

760 Communications of the Association for Information Systems (Volume 16, 2005) 756-784

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

Figure 1: F/OSS as an IPO System

THE LICENSE

A more technical definition of F/OSS (than the one provided earlier) would be software with
distribution terms (i.e. license) that comply with well-defined criteria [Bonaccorsi and Rossi,
2003a]. To say that a piece of software is F/OSS indicates that it is subject to the terms of a
particular category of licenses [McGowan, 2001]. The license defines the terms by which an
individual is to use the software.

F/OSS licenses are very important because they can serve as a governing mechanism that
enforces the norms of the F/OSS community, provides motivation for programmers by protecting
their efforts from appropriation, and distinguishes F/OSS from proprietary software [Bonaccorsi
and Rossi, 2003b].

The numerous F/OSS licenses available all maintain the openness and free distribution of the
source code11. The difference between the licenses reflects the different philosophies within the
F/OSS communities on how to advance the F/OSS projects and the need to deal with issues
surrounding a particular piece of software. As discussed in Section II, the Free Software (FSF)
movement and the Open Source Initiative Organization (OSI) reflect two different philosophies
within F/OSS communities.

“The Free Software Movement and the Open Source Movement are two political
parties in the same community.” [Richard Stallman as quoted in Wong and Sayo,
2004].

11 A comprehensive list, of F/OSS licenses, visit: http://www.opensource.org/licenses/
http://www.fsf.org/licensing/licenses/index_html

www.manaraa.com

Communications of the Association for Information Systems (Volume 16, 2005) 505-521 761

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

Both the FSF and OSI offer similar criteria in qualifying licenses as Free Software or Open-
Source. Many F/OSS licenses are approved by both. For a license to be qualified as F/OSS by
FSF or OSI, it must allow programmers to access, modify, and redistribute the source code. The
fundamental difference between the two movements is in their values, their ways of looking at the
world. At the heart of FSF is the freedom to cooperate. FSF considers non-free software unethical
and argues that users should be free to do what they want with their software. OSI is concerned
with the technical values of making powerful and reliable software, and advancing similar
principles to FSF by getting the corporate world to buy into their development methodologies. The
main focus of OSI is on the development process rather than the underlying moral requirement of
maintaining the freedom associated with the software. As FSF states, “Open source is a
development methodology; free software is a social movement.”12. Although the philosophy of the
two movements is different, both Open Source and Free Software developers do cooperate on
practical problems such as software development, efforts against proprietary software, and
software patents.

In summary, the ultimate goal of FSF is to give users the freedom to use software as they wish
and are clear about their goal. OSI’s ultimate goal is to win the buy-in of the corporate world by
promoting the benefits of F/OSS. OSI believes that, as a result, users would obtain the same
freedom.

FSF Licenses
It follows that each movement would recommend a different set of licenses. The FSF movement
recommends the use of licenses that are similar to the GNU13 Public License (GPL). The GPL is
the most widely used F/OSS license and is the strictest [Lee, 1999]. The GPL protects freedom
for all its users and prevents commercial appropriation of their collective effort. The GPL license
implements two principles that are, as the FSF sees it, the best means by which to preserve the
software freedom of the users.

1. The first principle is referred to as copyleft. The basic idea is that the works derived from
the original F/OSS source code base must also remain F/OSS. Any modifications cannot
be privatized.

2. The other principle is that the licensed F/OSS cannot be mixed with proprietary source
code [Lee, 1999]. This principle is also referred to as GPL compatibility by the FSF14,
since GPL was the first license to implement this principle. Hence the GPL requires any
source code linked to the GPL licensed software to be distributed as free software. It
effectively prevents people from taking advantage of F/OSS and using the software for
their own commercial benefit, by preventing a programmer from establishing copyright or
patent rights on the software and the integration with a closed/proprietary source program
at the source code level.

OSI Licenses
OSI recommends the use of licenses that fits the company’s business model. As discussed in
section II, Eric Raymond helped Netscape draft the Mozilla Public License (MPL) in 1998, around
the time OSI was established. The license, as a popular alternative to the GPL, does not
implement either of the FSF principles. OSI recognizes that the commercial success of the
contributors can be a force that can advance F/OSS. The license allows any modifications to be
made private and allows mixing proprietary source code with F/OSS source code. It is well suited
to programmers who want a greater degree of flexibility in combining F/OSS and proprietary
source code. This licensing method is more appropriate for use in a commercial context.

12 FSF official website is at http://www.fsf.org/licensing/essays/free-software-for-freedom.html
13GNU stands for GNU's Not Unix. Developed by Richard Stallman and the Free Software Foundation, GNU
is a high-quality version of the Unix operating system that is free of charge and freely modifiable by its users.
Many GNU applications and utilities are mainstays of the Unix community.
14 http://www.fsf.org/licensing/licenses/index_html

www.manaraa.com

762 Communications of the Association for Information Systems (Volume 16, 2005) 756-784

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

A common misunderstanding that arises due to the use of the term free and the costless
redistribution of source code for most F/OSS projects. Both FSF and OSI agree that software
producers can sell copies of their software for a fee. This view does not contradict any of the
principles of both organizations. The only issue is whether, after selling the software to the user,
the user does or does not have the right to use, modify, and redistribute the software as he see fit
without being restricted by the original producer.15

In summary, the key difference between various types of F/OSS licenses is the mechanism
behind them to enforce the openness of F/OSS [Lee, 1999]. The choice of F/OSS license is
affected by the ideological debates within the F/OSS community [Lee, 1999], and these play an
important role in protecting and determining the type of participation in the F/OSS community
[Hertel et al., 2003].

THE COMMUNITY

The community consists of all the developers and users of the F/OSS. They are dispersed over
time and space. Internet technologies and collaborative software offer the means by which the
members of the community interact and contribute. The community is the source of all input that
goes into the F/OSS system such as source code, requirements, and bug reports [Raymond,
1999c, Wayner, 2000].

Community Building

Open source communities begin when an individual or a group of individuals contribute an
initial functional prototype of the software as F/OSS. People then gather around this prototype,
with their own reasons and objectives, and work collaboratively to continue developing the
software [Raymond, 1999c]. As the software becomes more usable, it attracts more people to
the community, provided the software meets the developers’ interest. In turn, these new players
bring effort and contribution that is geared toward improving the software. A growth cycle starts
that feeds both the community and development of the software (Figure 2). This growth cycle
creates a network effect that is associated with the size of the community. As the community
size grows and becomes more diverse, so do its value and the value of the product (the
software). The growth ensures the ongoing survival of the community and further improvement
of the product [Raymond, 1999c].

Motivation
Attracting new members to the F/OSS community does not guarantee that these people will
contribute. The majority of people in the community are users who do not contribute with code
submission [Crowston and Howison, 2005, Krishnamurthy, 2002]. Since the advancement of the
project depends on free contributions from the community members, the members should be
motivated and technical able to contribute [Bezroukov, 1999, Raymond, 1999c].

Motivation for community participation is as diverse as the people that contribute to F/OSS. It can
be segmented into intrinsic and extrinsic motivation. Intrinsic motivation occurs when contribution,
in itself, is valued by the individual. This is the case when contribution is enjoyable, intellectually
stimulating, or when there

15 Selling free software: http://www.fsf.org/licensing/essays/selling.html

www.manaraa.com

Communications of the Association for Information Systems (Volume 16, 2005) 505-521 763

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

Figure 2. F/OSS Community Initiation and Growth

is a sense of obligation to contribute back to the community. Extrinsic motivation is involved when
a reward is associated with performing the activity. In this case, the contributor expects to obtain
something back from contributing to the community such as satisfying a software need,
recognition, skill improvement, career advancement, or even being paid in some cases [Lakhani
and Wolf, 2005].

The Boston Consulting Group [Lakhani et al., 2002] found that people contribute to F/OSS for
different reasons. (Figure 3). The intellectual challenge and skill improvements are the main
reasons why most OS community members contribute. Results of the study also show that
contributors fall into four groups:

• The F/OSS believers, who contribute because they believe all source code should
remain open.

• The thrill seekers, who contribute because of the intellectual stimulation that is
associated with programming and view it as a hobby.

• The skill enhancers, who contribute mainly to improve their programming skills.
• The IT professionals, who contribute because of work related needs and for

professional status improvement.

Reasons for contribution can also be explained in economic terms. Total benefit for a contributor
is the sum of immediate payoff (benefits and costs) and delayed payoff (benefits and costs).
Immediate benefits include satisfaction from use of the software and cost comes from opportunity

www.manaraa.com

764 Communications of the Association for Information Systems (Volume 16, 2005) 756-784

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

cost of time spent on programming. Delayed payoffs are future career opportunities and ego
gratification stemming from a desire for peer recognition [Lerner and Tirole, 2002].

43.2

43.2

34.2

30.2

30

28.3

20.1

17.4

16.3

11.5

11.3

0.4

0 5 10 15 20 25 30 35 40 45

% of respondents

Intellectually stimulating

Improves skill

Code should be open

Non-Work functionality

Work functionality

Obligation from use

Work with team

Professional status

Other

Open Source reputation

Beat proprietary software

License forces me to

Figure 3: Motivation in F/OSS Communities - Source BCG 2002

Community Structure.
As shown in Figure 4, an F/OSS community has an onion-like structure that is based on the level
of contribution [Cox, 1998, Gacek et al., 2001, Mockus et al., 2002, Moon and Sproull, 2000]. The
core is the smallest group in the community that is responsible for the majority of code
development (about 80% of source code is generated by the core) and effort contribution
[Crowston and Howison, 2005, Krishnamurthy, 2002, Mockus et al., 2002]. It also maintains the
most control on what features should be in the product and how it should be designed [Lee and
Cole, 2003]. Co-developers surround the core. They contribute occasionally by modifying or
reviewing code or submitting bug fixes. Surrounding the core and the co-developers are the users
who are the majority in the community. Users can be active or passive users. Active users are the
ones that use the latest releases and usually contribute ideas and bug reports. Passive users are
free riders who simply use the software without contributing back to the community [Crowston et
al., 2004].

Traditional software development is a team endeavor focusing on the development of large
software systems through a software development life cycle that consists of a set of stages:
System Planning, Analysis, Design, and Implementation. In contrast to the traditional world of
software engineering, open software development communities do not seem to adopt or practice
traditional software development processes [Scacchi, 2001]. In this subsection, we examine the
development processes being used in practice.

Research on F/OSS development processes in different project communities [Crowston and
Howison, 2005, German, 2003, Johnson, 2001, Lee and Cole, 2003, Scacchi, 2002] so far found
no globally accepted framework that defines how F/OSS is or should be developed [Scacchi,
2002]. However, many F/OSS projects displayed a great degree of similarity. Projects begin with

www.manaraa.com

Communications of the Association for Information Systems (Volume 16, 2005) 505-521 765

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

Figure 4. Community Structure [Crowston and Howison, 2005]

a prototype with pre-defined requirements developed from scratch or based on existent older
product [German, 2003, Johnson, 2001, Scacchi, 2002]. Then, this early version incrementally
evolves through rapid development iterations from the community, while concurrently managing
as many designing, building, and testing activities as possible [Cockburn, 2002, Fowler, 2003,
Johnson, 2001, Kogut and Metiu, 2001]. The five main steps for this approach are [Jorgensen,
2001]:

1. Code: potential F/OSS contributors take the initial step of submitting their code;
2. Review: talented and respected peers review the code in order to improve the quality of

the code being submitted;
3. Pre-commit test: committers, the gatekeepers who are responsible for making code

contributions permanent, test each contribution carefully;
4. Development release and parallel debugging: The committer incorporates the module in

the development release if it passes the pre-commit test. The quality of F/OSS could be
comparatively better than proprietary software, because the additional sets of eyeballs
viewing the code might help catch additional bugs. Bugs can also be fixed by the
individuals that identify them;

5. Production release: contributions eventually become part of the production release. They
are merged into the stable production branch.

These development tasks can be classified into a two-tier structure that identifies several key
tasks performed in the development process. These tiers are called Core and Periphery [Lee
and Cole, 2003].

The core includes the tasks of selecting and retaining code for the official production release
according to the pre-defined requirements. These tasks are executed by members with special
privileges such as a project leader and maintainers.

The periphery includes the tasks of submitting source code and fixing bugs (performed by the
Development Team) and reporting and documenting a bug (performed by the Bug Reporting

www.manaraa.com

766 Communications of the Association for Information Systems (Volume 16, 2005) 756-784

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

Team. The source code and fixed bugs are tested and reviewed by thousands of developers in
the periphery. This process is referred to as peer review or gate-keeping in the F/OSS
community. Peers evaluate code and provide suggestion for further improvement if it does not
meet the requirements of the project.

As discussed in above, the open software development starts with a prototype and, in most
cases, requirements of the software need to be changed through the requests of developers. For
example, developers at the periphery can propose a new requirement because they want the
feature and are willing to do most of the work. Then, the core decide on its value and chooses to
accept or scrap the idea. [Hissam et al., 2001]. In a F/OSS development process, new
requirements for software are described, asserted, or implied informally through an email
message or within a discussion thread that is captured or posted on a project's Web site board for
open review, elaboration, refutation, or refinement [Scacchi, 2002]. No matter what methods are
used, new requirements are brought by the periphery, and are gathered and prioritized by the
core [German, 2003]. Thus, on one hand, the core decides which new requirements are to be
implemented and in which order; on the other hand, the periphery provides input and apply
pressure on the core to shape their decisions. The two-tier task structure also coordinates
activities of reformulation of the requirements for developing the F/OSS and ensures adaptation
to shifting user requirements. These requirements are conveyed through informal communication
mechanisms, such as online discussion forums or threaded email messages [Scacchi, 2001].

Note that the two-tier task structure is defined according to tasks not individuals. In reality, there
exist no strict rule for a certain individual performing a specific task. For example, Lee and Cole
[2003] report 49% of the Bug Reporting Team also performed the tasks of the Development
Team, while 29% of the Development Team performed tasks of the bug reporting team. The
overlap of the Development Team with the Bug Reporting Team shows that an individual can play
different roles and perform multiple periphery tasks. This overlap is also true for individuals
performing core tasks. In the majority of F/OSS projects, members that perform core tasks also
contribute most of the code [Krishnamurthy, 2002]. However, the majority of F/OSS projects are
not successful in the sense of creating a large enough community that is able to sustain itself.
This failure might explain the tendency for development efforts to be centralized [Crowston and
Howison, 2005]. Successful projects with larger development communities observe more
distributed communication and development effort. However, it still remains true that the
members performing core tasks are also responsible for generating more code [Crowston and
Howison, 2005].

As shown in Figure 5, the two-tier task structure is combined with the five stages development
process to show clearly how various tasks are completed in different stages. As noted, the solid
line from stakeholder to stage means that specific stakeholder puts in effort and provides key
input to a certain stage. The dashed line with a notion of transition reflects the reality that
individuals can change their roles in the F/OSS development process by performing different
tasks. Figure 6 shows a synthesis of the community structure with the task structure and
illustrates how different member classes perform different tasks.

THE SOFTWARE

A continuous output of the unique development process is the resulting software. The software
might have some unique benefits when compared to proprietary software. However, such
benefits also depend on how potential users approach F/OSS to take advantage of it.
Furthermore, each of the four components of F/OSS affect the quality of the software differently.
F/OSS also affects how the users can benefit from the software (Section IV).

www.manaraa.com

Communications of the Association for Information Systems (Volume 16, 2005) 505-521 767

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

Figure 5: F/OSS Development Process and Two Tier Task Structure

Figure 6. Community Structure Illustrating Who Performs Which Tasks

Transition Development
Team

Bug
Reporting

T

Project
Leader

&
Maintainers

 Transition

Periphery
 Source code generation and review
 Bug reporting and feedback
 New requirements proposal

Core
 Source code selection

and retention
 New requirement

selection and
prioritization

Code Pre-commit
test

Development
Release &
Parallel

Debugging

Production
Release

Review

www.manaraa.com

768 Communications of the Association for Information Systems (Volume 16, 2005) 756-784

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

An important issue for F/OSS is modularity. A software module is a “portion of an application
program that can be designed, developed, and tested relatively independently of the rest of the
program” [Lee, 1999]. Software modularity promises a more flexible development process and
shorter development cycles, and thus more robust products. For F/OSS, modular software design
provides the foundation for the parallel development process by allowing independent
development and testing of individual modules. Thus, modularity potentially shortens the
development cycle and increases the robustness of the product. At the same time, however, such
a flexible development process and the diverse composition of the community create challenges
for F/OSS final products. Such problems are epitomized by Conway’s Law, which states that “the
structure of a product mirrors the structure of the organization that creates it.” [Crowston et al.,
2004]. Therefore, it might be harder to achieve an integrated product from the modules developed
through different processes and physically distributed community members.

The IPO system conceptualization of the F/OSS is the key in understanding the eventual quality
of the software output. As we saw earlier in this section, the observable development pattern for
most F/OSS project is centralized [Crowston and Howison, 2005, Krishnamurthy, 2002]. It is
different from the cathedral metaphor commonly used to describe the F/OSS development
process [Raymond, 1999c]. Companies developing proprietary software might be able to replicate
this centralized process for source code generation. However, the biggest difference is in the
feedback. First order feedback, such as bug reports and the peer review process, ensures the
software meets the requirements and quality standards of development. Second-order feedback
is concerned with updating these requirements. In a proprietary development setting, the
feedback is limited to the development team and the customer in some cases. Furthermore, in
F/OSS if the community is large and active, the level of feedback will be difficult to replicate in a
proprietary software development process economically.

In summary, the development process and community impact the quality of the software directly.
A large community will be worthless if the members are not motivated to contribute source code
and feedback to the development process. The license also impacts the type of contributors and
quality of the feedback. This community feedback is what sets the F/OSS and proprietary
software apart. Its greatest impact is on quality. Organization of the community and coordination
of effort is tied to software modularity. As a result, the quality of the software also depends on the
modularity of its design.

IV. BENEFITING FROM OPEN SOURCE

F/OSS is characterized by its four components16 (Section II). Companies wishing to benefit from
F/OSS can do so in different ways. We summarized these benefits in terms of three distinct
approaches centered on each of three of the four components: software, community and license.
These approaches lie on a rough continuum starting with no involvement in the community, and
ending with the company as an F/OSS developer who initiates the community. In this Section we
describe these approaches and key questions for each approach that companies should ask
before investing. No matter which approach a company chooses to take, its success will depend
on the quality of all four components, not only the one in focus.

SOFTWARE-CENTERED APPROACH

What is Software-Centered Approach and when should it Be Used?
The software-centered approach focuses on using the product, (i.e. the developed software)
directly. The software to some extent can be viewed as a commodity. However, different from
proprietary software, F/OSS, obtained free or purchased, is free for further revision and
distribution. Software users can take advantage of the specific benefits of F/OSS as passive
users in the community. Their role and degree of involvement in the community are minimal.

16 For reference, the four components are license, community, development process, and software,

www.manaraa.com

Communications of the Association for Information Systems (Volume 16, 2005) 505-521 769

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

Their objective is mainly autonomous in-house software usage. They are not obligated to provide
feedback or modifications back to the community.

As potential users, companies first clearly identify their needs in terms of objectives, budgets,
time restrictions, and current technical capabilities (hardware, software, knowledge, and skills).
They then evaluate the software candidates, based on their needs. This process is nothing new.
Companies can use exactly the same procedures as for evaluating proprietary software. Their
ultimate objective is to obtain software which is ready to be used or modified for use.

Potential users can obtain the software through three different approaches. First option is in the
form of bundling. In that case, the desired software is bundled with hardware or as part of a
software package. Users can purchase the software from hardware vendors, such as HP, which
has “over 200 products that ship with open source software”17. A second option is to obtain the
software from a F/OSS vendor such as Red Hat18. Users can download the software from Red
Hat website for free. However, Red Hat charges for supporting services, through a subscription
fee. For both the above approaches, the vendors guarantee support. Users do not need to reach
the community directly but can obtain the software indirectly through the vendor. Alternatively,
potential users can choose to download the software directly from the community. In this case,
the users can obtain support from the community if needed. Such support is not guaranteed.

For all three approaches, two with indirect and the third with direct access to the community, it is
important for users to be aware of the nature of the software, and the other components of the
IPO model. For the first two approaches, even though the users do not connect with the
community directly, the vendors who provide software to the users are members of the
community. For any situation, the software is subject to the impact of the community. Users can
harness the benefits of F/OSS in the future, such as frequent and free new release updating. For
the third approach, the users themselves are members of the community. Therefore, in all cases,
even for companies following the software-centered approach, understanding the license,
development process, and community, in addition to the software product itself is important in
making the adoption decision.

The evident benefit of the software-centered approach is reduction in time and effort. Companies
can choose comparatively mature, or ready-to-use, F/OSS. This approach does not require
involvement in the community and development process. The companies can be pure users, in
other words, free-loaders. This approach does not require substantial technical capabilities from
the companies either, since they need not be involved in the development process. However, less
involvement and less input mean that they influence the software, the community, and the
development process less. They are more like consumers and they must accept the restrictions
set up by the licenses.

The software-centered approach is most appropriate for companies that need well-developed,
highly commoditized software with a strict budget or timeline, or do not have the technical
capability to contribute, or are not willing to get involved in the software development process.

Benefits
The software-centered approach entitles potential users to leverage any unique advantages of
F/OSS, compared to proprietary software. Among the benefits of F/OSS, some most widely cited
are reliability, security, and low cost.

Reliability. The F/OSS demonstrates a high level of reliability [Williams et al., 2005]. Compared
to proprietary software, F/OSS development communities contain a virtually unlimited number of
developers, not constrained as is the case with proprietary software vendors. Since all community

17 http://opensource.hp.com/
18 www.redhat.com

www.manaraa.com

770 Communications of the Association for Information Systems (Volume 16, 2005) 756-784

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

members can access to the source code and debugging tools, they can often suggest both bug
fixes and enhancements to the source code and have their contributions reviewed by peers.

Security. Companies do not have to wait for vendors to release patches and security upgrades
for their software because the community maintains the effort. In the same way the development
process allows the production of more reliable software, it allows the production of more secure
software. Identified security problems are communicated in the community and fixed in much
shorter cycles than closed software. Some may argue that closed source is more secure because
of its obscurity. However this assumption only gives a false sense of security and usually a longer
period of time passes before the vendor is actually aware of the existence of a security problem.
It might take even longer to fix [Raymond, 1999b]. Therefore, the wider and easier access to
source code, which is considered insecure from the perspective of proprietary software
development, actually increases the probability of detecting and fixing F/OSS errors and
problems. This view is reflected in Linus’ Law “Given enough eyeballs, all bugs are shallow.”
[Raymond, 1999c].

Low Cost. Advocates of F/OSS claim that it costs much less compared to proprietary software
because licensing fees are eliminated. Administrative overhead is potentially reduced because
accounting for copies in use is not needed. Cost of upgrading and maintenance is also reduced
due to the free contribution of the development community and the improved stability and security
of F/OSS. Based on numerous case studies, Stafford [Stafford, 2004] points out that F/OSS costs
less than proprietary software especially in server environments. However, this analysis may not
be the complete picture. Costs based on the total cost of ownership (TCO) including the total cost
of acquiring, training, and customizing, might result in a different picture. To switch to F/OSS
might not mean that TCO is reduced. Potential costs may involve a requirement of investment
into some specialized expertise and training of employees to learn how to use the system, or
even replacing the platforms that are in place. In some cases, these additional costs may not
make it worthwhile to select F/OSS solutions [Stevenson, 2005].

Challenges
The unique development process and community composition of F/OSS creates challenges for
potential users. Minoru Development SARL an F/OSS development, management, and
consulting firm, suggests that the main challenges facing F/OSS projects are19:

1. Open source projects are not deadline driven, which may not be a problem when
deploying finished work, but can be a problem if customers depend on anticipated future
events. The best way for customers to manage this risk is to participate actively in the
F/OSS project20.

2. F/OSS is not as well established as proprietary software in some areas.
3. F/OSS involves a high entry barrier for non-technical users. The first success of F/OSS

was in areas where the users and developers are one and the same. F/OSS is strongly
technically orientated and is unproven for non-technical applications. Although open
source is now expanding into new areas and producing products for non-technical users,
this work is still in its infancy.

Support. For proprietary software, technical support is usually part of the purchased package.
But for F/OSS, support experiences can vary. On one hand technical support might be prompt
and helpful, with the whole community as the potential helper. On the other, desired support may
not be available, since no one is obligated to provide help. This uncertainty implies that potential
users of F/OSS evaluate the community before adopting the software. If this evaluation still posits
a challenge, the potential users should consider the vendor-supported options.

19 http://www.openhealth.com/en/opensource.html
20 This recommendation aligns with the next suggested approach, community-centered.

www.manaraa.com

Communications of the Association for Information Systems (Volume 16, 2005) 505-521 771

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

All four components of F/OSS can be important success factors for its adoption. The community
behind the software directly determines the quality of the software and the availability of support.
The quality of the software itself depends on the development process. Since criteria for a good
development process are not established , we expect that a healthy community can serve as
proxy for a good development process, assessed by its size, openness, and diversity.
Meanwhile, the license of the software restricts the application of the software. Therefore, before
making the final decisions, potential users should evaluate not only the software, but also the
corresponding community and license, to gain maximum benefits from F/OSS.

Table 1 provides a question-list for potential users, to help make decisions about software
adoption when using the software-centered approach.

THE COMMUNITY-CENTERED APPROACH

What is the Community-Centered Approach and When Should it be Used?
A promising approach for companies is to benefit from the communities. The focus here is not
only on adopting the final product, but also taking advantage of the community members who
produce the product. A healthy community provides a much broader and richer knowledge
database and more flexible development process [Wheeler, 2005]. The objective of this approach
is to use the whole community as an external knowledgebase. Companies do not simply choose
a software product and use it. Instead, they choose an appropriate community and become
actively involved in the development processes and in community activities. Potential users can
be co-developers or active users. They are acting as significant stakeholders in the community.
They, themselves, are part of the F/OSS knowledge database. They originate opinions and
comments, share codes, provide feedback, and give suggestions.

This approach is to some extent a hybrid of in-house development and outsourcing. Companies
taking this approach need the technical capability to become involved in the software
development process and contribute to the community. At the same time, their capability is not
sufficient for them to develop the software all by themselves. This approach works better for
companies that want to build their software development knowledge and skills, but need external
intelligence to do so. These companies should aim to use and improve the software continuously,
rather than the autonomous in-house use in software-centered approach.

Benefits
Like the software-centered approach, the community-centered approach can enjoy the benefits
unique to F/OSS. Besides the software advantages, the community-centered approach further
provides some level of influence upon the software development and features. As a result of
active participation, involvement, and input, these active firms or co-developers are able to gain
some influence on software development issues, such as key features of the software. Thus,
they are able to use the community to customize the software to meet their needs.

At the same time, by participating in the development process, companies can improve their
learning ability. Training is also embedded in the participation process [Lussier, 2004].
Companies can increase their understanding of the software development process, the strength
and weakness of the software, and the feedback and reports from other users. Such valuable
learning experience should enhance the companies’ technical capability and facilitate the in-
house application or customization of the software.

Challenges
This approach sets a higher bar for companies. To gain more control and influence, and to learn
more, companies need to devote more time and effort. Companies should also posses certain
technical capabilities to be able to act as active participant or co-developer in the community.
They, as participants but not initiators, still must follow the restrictions of the licenses.

www.manaraa.com

772 Communications of the Association for Information Systems (Volume 16, 2005) 756-784

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

Table 1. Questions for Software Centered Approach

Category Question Desirable Answer

Community Size: what is the size of the
community? Is it growing?

 Dynamism: are both
developers and users actively
participating in the F/OSS
development?

 Knowledge: does the
community (members) possess
broad knowledge and expertise?

 Users: are the users of the
F/OSS from diverse
industries/domains?

 Core players: who are the
core players/leaders of the
community?

 Big or Growing. The larger the size of the
community, the more feedback there will be. A higher
quality product will be associated with a larger
community, while the quality of the product will improve
in the long run as the community shows signs of
growth.

 Significant portions of the community are
active participants. Active participation not only by
developers but also by the users is what makes the
difference in quality of the software. It is also the means
by which community members provide technical
support.

 The community is effective in using the
knowledge its members possess. The community is
effective in solving problems that arise. The
development process is planned and structured.
Problems with the software are easily communicated
and solved in a short time cycle.

 The software has a broad user base. Users
from different background might bring new perspectives
and insights into F/OSS project. This broad user base is
also reflective of the success of the software.

 The objectives of core player—Individual or
commercial entities, are not contrary to that of
organization. The organization will be able to deal or
influence these individuals or entities should the need
arises in the future.

Developme
nt Process

 Documentation: Does the
community maintain a complete
documentation of the F/OSS
development? Does it keep record
of all releases? Does it provide
detail documents of notes and
changes?

 Bugs database: does the
community maintain a bug database
that provides a user-friendly
interface for users to report bugs,
and to search bugs and
corresponding solutions provided by
the developers?

 Available documentation is not only a general
guide but also a detailed manual that you could hand to
a novice provided it is up to date. If not, then there
needs to be a supportive community that can augment
the need for documentation.

 There is an available database that should be
able to keep a record of all reported bugs, whether the
bug has been fixed or not, which version of the software
does the bug belong to, and whether the bug submitter
has agreed that the bug has been fixed. This bug
database is not only a good indicator for the health of
the community, but also providing useful information for
future revision and usage of the software.

License Can we accept the license
fee, if any?

 Can we accept the
restrictions set up by the license?

 Some F/OSS requires a license fee for use of
the software in a commercial context. However, the
license fee is just a small portion of TCO. The relatively
low license fees of F/OSS need not necessarily reduce
TCO of using and maintaining the system.

 Licensing terms should be consistent with
expectations, goals and risk tolerances of company.
F/OSS licenses should be carefully reviewed before use
of the software in a commercial context.

Software Do we have sufficient
technical capabilities (hardware,
systems, knowledge, and skills) to
use or customize the software?

 If companies do not possess the required
technical capabilities then they should be acquire these
capabilities. As part of TCO evaluation, the costs
required to obtain the necessary technical capabilities,
such as hardware configuration, hiring new IT
personnel should all be factored in. These capabilities
can be searched for within the community.

www.manaraa.com

Communications of the Association for Information Systems (Volume 16, 2005) 505-521 773

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

Even with all the input, the desired level of control might not be guaranteed. In spite of the effort
and time devoted, companies risk having little or no influence in the process. Therefore,
companies must fully evaluate the community. As the primary condition for this approach, the
community must be well organized, of high quality, and be friendly to newcomers.

Another challenge for community-centered approach is that in some cases companies need to
adjust their own routines and structures to fit into the F/OSS development process. Such
adaptations could lead to higher development costs and conflicts within the companies.

As with other approaches, all components of F/OSS should be balanced to maximize benefits
gained from this community-centered approach. The companies should try to estimate the degree
of influence they require and might obtain if they participate actively and contribute to community
activities. This effect can be gauged based on information from previous members and the
structure and mechanism of the community. They should assess the license problem, in terms of
such factors as source code disclosure and authority to modify and/or resell.

Table 2 provides a question-list for potential users, to help make decisions about software
adoption when using the community participation approach.

LICENSE-CENTERED APPROACH

What is the License-Centered Approach and When Should it be Used?
A less obvious approach that is suited for companies developing software is the license-centered
approach. This approach involves initiating an F/OSS project by either releasing the software of
an existing solution to the community as F/OSS, or initiating an F/OSS community to develop the
software. The released source code will be the basis for future development of the software. The
releasing company can act as an incubator for the project to see whether it will develop into a
self-sustaining system. We call this approach the license approach because the company
controls how it is going to license the software. Companies taking this approach will be acting as
the core of this community and will be benefiting from the F/OSS development system as
described in Section III.

As compared to the previous two approaches, this approach is concerned with developing a
software product. It provides the company with the most control over the software development.
The other two approaches are concerned with obtaining a software solution.

The two basic rationales behind using this approach are[West, 2003]:

1. It can provide the company releasing21 its internal software with a level of developmental
assistance that it can never afford to obtain or match on its own.
2. It can potentially improve the diffusion of the product and create network effects associated
with this diffusion from which the company could benefit [West, 2003].

This approach has been employed by many organizations (such as Apple with the Darwin
project22, and SUN with the Open Office project [Gedda, 2005]) that released software or parts of
it as F/OSS with varying degrees of success [Dahlander and Magnusson, 2005, Gedda, 2005,
West, 2003]. By acting as the core of an F/OSS community, the company can tighten the
relationship with customers, leverage customers as a resource, and improve the customization of
the software for its customers [Hipple and Katz, 2002]. This approach can also help with building
switching cost for users of the software. Therefore, it is most appropriate for companies that aim
to improve their competitive position through the means of community building, or for companies
that simply need external intelligence to develop and customize the software and want maximum
control over the software development.

21 We use the term releasing company in what follows.
22 http://developer.apple.com/darwin/

www.manaraa.com

774 Communications of the Association for Information Systems (Volume 16, 2005) 756-784

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

Table 2. Questions for Community Centered Approach

Category Question Desirable Answer
License Can we accept the

license fee, if any?

 Can we accept the
restrictions set up by the license?

 Some F/OSS requires a license fee for use of the
software in a commercial context. However, the license fee is
just a small portion of TCO. The relative low license fees of
F/OSS need not necessarily reduce TCO of using and
maintaining the system.

 Licensing terms should be consistent with
expectations, goals and risk tolerances of company. F/OSS
licenses should be carefully reviewed before use of the
software in a commercial context.

Community Size: what is the size of
the community? Is it growing?

 Dynamism: are both
developers and users actively
participating in the F/OSS
development?

 Knowledge: does the
community (members) possess
broad knowledge and expertise?

 Users: are the users of
the F/OSS from diverse
industries/domains?

 Core players: who are
the core players/leaders of the
community?

 Does the community
have a clear structure and rules of
organization?

 Does the community
promote new participation? Are
there any contribution guidelines
or documentation to make it
easier for newcomers to
contribute?

 Do community members
take the time to review the work of
others?

 Big or Growing. The larger the size of the community,
the more feedback there will be. A higher quality product will
be associated with a larger community, while the quality of the
product will improve in the long run as the community shows
signs of growth.

 Significant portions of the community are active
participants. Active participation not only by developers but
also by the users is what makes the difference in quality of the
software. It is also the means by which community members
provide technical support.

 The community is effective in using the knowledge its
members possess. The community is effective in solving
problems that arise. The development process is planned and
structured. Problems with the software are easily
communicated and solved in a short time cycle.

 The software has a broad user base. Users from
different background might bring new perspectives and
insights into F/OSS project. This broad user base is also
reflective of the success of the software.

 The objectives of core player—Individual or
commercial entities, are not contrary to that of organization.
The organization will be able to deal or influence these
individuals or entities should the need arises in the future.

 The community is well organized into independent
development teams focusing on different modules. There is
also a communication structure that allows for the integration
between the different teams.

 There are clear guidelines on how individuals should
contribute. The source code is well documented. There are
even technical documents that can help contributors get
started.

 Peer review process is very active with short review
cycles.

Developme
nt Process

 Do we have sufficient
technical capabilities (hardware,
systems, knowledge, and skills) to
participate in the development
process?

 Do we have to change
our organizational structure or
routines to participate?

 We have enough capabilities to contribute to the
development effort. The idea to learn from this effort or
increase our benefit from the final product.

 Our current organizational structure promotes the
participation of our employees in F/OSS projects. Our
employees are acquainted with F/OSS development
methodologies If not, then change management is to be
introduced to instill new values and introduce our employees
to the F/OSS methodologies.

Software Is the software design
modular?

 Software has a good modular design that enables a
decentralized development process and allows for further
expansion and growth of the development community.

www.manaraa.com

Communications of the Association for Information Systems (Volume 16, 2005) 505-521 775

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

released software or parts of it as F/OSS with varying degrees of success [Dahlander and
Magnusson, 2005, Gedda, 2005, West, 2003]. By acting as the core of an F/OSS community, the
company can tighten the relationship with customers, leverage customers as a resource, and
improve the customization of the software for its customers [Hipple and Katz, 2002]. This
approach can also help with building switching cost for users of the software. Therefore, it is most
appropriate for companies that aim to improve their competitive position through the means of
community building, or for companies that simply need external intelligence to develop and
customize the software and want maximum control over the software development.

Benefits
In contrast to the other approaches, the license-centered approach is concerned with producing a
product. This product will enjoy the same benefits and qualities that were discussed in the other
approaches, provided the company is able to grow the F/OSS system into a healthy one. Unlike
the other approaches however, the benefits that the companies can achieve from this approach
are all long term. It takes a long time to grow the F/OSS system into a self-sustaining state where
the F/OSS benefits can be realized in the product.

Provided the community reaches the critical self-sustaining size, the company can gain numerous
benefits from the F/OSS development system [Bonaccorsi and Rossi, 2003b, Scacchi, 2004,
West, 2003, West and Gallagher, 2004b]. It would help reduce the costs of development since
community members from outside the company contribute to the development process of the
product. These contributions include not only source code, but also new and innovative ideas.
With the source code open, the software acts as a toolkit that customers can use to bring about
new design innovations and improve customization. It helps the producer in better understanding
customer needs, increasing customer satisfaction, and prolonging the product life cycle [Hipple
and Katz, 2002] [Scacchi, 2004].

Furthermore, releasing software as F/OSS would speed up the diffusion of the product since
there is virtually no cost to obtaining F/OSS. This approach can also place the releasing company
in a better competitive position especially when the tipping of the network effect occurred in favor
of the competition. Releasing a low cost alternative puts pressure on the competition to lower
their prices. Furthermore, by supporting the establishment of a self-sustaining system to overlook
the development and improvement of the software, the product could be continuously improved to
replicate any features that are already included in the competitors’ product, or even surpass
them. A self-sustaining system would also mean that the pressure is on the competition to
innovate continuously, with minimum resource allocation on the part of the releasing company.
The company can relocate previously allocated resources for the project to another, more
profitable one. The opposite may not be true for a competitor using a proprietary development
method, because the resources available within an F/OSS community can not be replicated
economically in a proprietary setting. While the competitor might use the ideas to improve the
code, it seems likely that imitation, will always lag the F/OSS community due to the embedded
knowledge in F/OSS and the difficulty in producing at the same rate or quality as an F/OSS
community.

This approach provides a good means for customer relationship management. By improving the
quality of the software, the customized software can attract more customers. These customers or
users of the software become part of the community. With network effects, better software leads
to a bigger community, and a bigger community makes the software even better. This cycle
pushes the adoption rate of the software. Meanwhile, by involving the customers in the
development process, the companies are able to tighten the relationship with customers. This
involvement of the customer also creates switching costs.

Challenges
As with other approaches, it is a matter of balancing the four components of F/OSS to achieve
success using this approach.

www.manaraa.com

776 Communications of the Association for Information Systems (Volume 16, 2005) 756-784

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

The biggest issue with having a company release software as F/OSS is that it is relinquishing its
right to appropriate any income directly from that software. If the software was a source of
competitive advantage for the company then it does not make sense to create a spin-off
community from it because the company would be losing a source of income. The companies
need to determine what to release.

One strategy companies could use to deal with this matter is “open parts” which deals with
distributing parts of the software. [West, 2003]. This strategy relates to the number of
technologies or layers released from the software. Companies can choose to release
commoditized layers that are not a source of competitive advantage and retain full control of the
layers that can be a source of competitive advantage. This strategy will depend, however, on how
modular and loosely coupled the software design is. A good example for this strategy is the Apple
Darwin project23.

Another strategy companies can use is to “partly open” the source code [West, 2003]. For this
case, they need to make appropriate use of licenses. Companies can choose to disclose
technologies that provide competitive advantage but put legal restrictions that can provide value
for the customer but prevent competitors from using the technology. The Microsoft shared source
initiative and SUN Java technology are examples for such strategies but are not pure F/OSS.

Some of the successful F/OSS projects use a dual licensing strategy. This strategy allows the
company to release the software as both F/OSS and as commercial product when the F/OSS
license is not appropriate for the customer. MySQL used such a dual licensing strategy. In 2005,
MySQL served around four million F/OSS customers and around four thousand commercial
ones24. Other companies, such as Red Hat, choose to keep the software as F/OSS but build a
business model around selling complementary products or providing service for their products.

The biggest challenge that remains after releasing the software is getting the community to
participate. This matter is not trivial as discovered by the OpenOffice project, which is faced with
delays because it does not involve enough developers [Gedda, 2005]. As discussed in Section III,
F/OSS developers would like to work on an interesting project but not something that will lead to
a dead-end or with marginal impact [Lerner and Tirole, 2002a]. Firms need to balance between
the protection of competitive cutting edge technology and the interests of the developers.
However, with that said, companies may be the appropriate entities for incubating F/OSS projects
because of their stake in the success of the technology and their initial implementation of the
software to be released to the public. If the releasing company acts as the core, it helps the
community pass two major hurdles: proof of concept implementation, and leadership.
Furthermore, companies may be in a better position to offer incentives or provide career paths for
F/OSS developers. This capability could make spin-offs more attractive for developers, especially
when the technology itself is not that interesting to them [Dahlander and Magnusson, 2005, West
and Gallagher, 2004a]. Therefore, spin off projects might have a higher probability to succeed
and pass the initial stages of an F/OSS project when compared to community initiated F/OSS
projects. However, for the project to develop into a self sustaining one requires foresight from the
company that initiated the effort in setting up the control structures of the community and a
willingness to hand off that control to the community [West and Gallagher, 2004a, West and
O'Mahony, 2005].

Even if the project is interesting and getting a community behind it is possible, an additional
challenge is coordinating the development process, especially when the company retains its own
development process. For the software to have any chance of success, the releasing company
should employ an F/OSS development process that enables community contributions. Change
management is required to instill F/OSS development methodologies into the company.

23 http://developer.apple.com/darwin/
24 http://www.mysql.com/company/legal/licensing/faq.html

www.manaraa.com

Communications of the Association for Information Systems (Volume 16, 2005) 505-521 777

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

Due to the complexity of this approach, large companies which plan to start up a F/OSS
community can use lawyers to help them choose the best license to fit their needs and objectives.

Table 3 provides a question-list for potential users, to help make decisions when initiating a
F/OSS community.

In summary, potential users of F/OSS can benefit by following different approaches to F/OSS,
each emphasizing a different component of the F/OSS, i.e. software, community, and licenses.
These approaches present different challenges. Selection of an approach should be done
carefully with full consideration of the companies’ objectives and resource availability.

Table 3. Questions for License Centered Approach

Category Question Desirable Answer

Software Are we clear on why we
want to release our software as
F/OSS?

 Will the release of the
source code impact our
competitive advantage? Is our
software design modular? Can it
be broken into separate
products?

 Is the software design
modular?

 We would like to improve our competitive
position by increasing the diffusion of our product and/or
gain assistance in the development process.

 The released software or the parts that are to
be released are commoditized. If not, then we are trying
to stimulate the interest of the community and rethink our
business model.

 Software has a good modular design that
enables a decentralized development process and
allows for further expansion and growth of the
development community.

Community Are we able to motive
people to participate in the
community?

 Can we afford the time
and effort to initiate the
community and to participate?

 The software is cutting edge technology to
stimulate the interest of programmers. Or the success of
our customers is aligned with our own success, so we
will see more active participation from our customers. If
none of these is the case, then we can also create
incentives such as paying or employing some of the
active community members.

 The values and ideals of F/OSS are part of our
culture. We understand F/OSS development
methodologies and promote the participation of the
community. We also understand that developing an
F/OSS community is a long term endeavor.

License Can we establish
appropriate license to ensure our
benefit? What implications will
our choice have on community
participation?

 We are taking the GPL approach to attract the
free software believers. We can chose to use a dual
licensing strategy so we can meet the demands of our
commercial customers. We can also take the Mozilla
license approach and attract members who seek their
own commercial success to drive their participation.

Development
Process

 Do we have sufficient
technical capabilities (hardware,
systems, knowledge, and skills)
to participate in the development
process?

 Do we have to change
our organizational structure or
routines to participate?

 We have enough capabilities to contribute to
the development effort. The idea is to learn from this
effort or increase our benefit from the final product.

 Our current organizational structure promotes
the participation of our employees in F/OSS projects.
Our employees are acquainted with F/OSS development
methodologies. If not, then change management is to be
introduced to instill new values and introduce our
employees to the F/OSS methodologies.

www.manaraa.com

778 Communications of the Association for Information Systems (Volume 16, 2005) 756-784

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

V. MISCONCEPTIONS ABOUT F/OSS

In this section, we revisit many aspects of our discussion of F/OSS by examining some commonly
held misconceptions. We first state the misconception and then briefly draw from our prior
discussion in refuting them.

MISCONCEPTION 1: F/OSS IS LINUX.

One of the biggest misconceptions about F/OSS is that F/OSS is all about Linux [Moreira, 2002]
[Reijswoud and Topi, 2003]. Linux certainly played an important role in the origins and
development of the F/OSS. As one of the most popular server platforms over the past 10 years, it
is perhaps the most widely used F/OSS. However, F/OSS is not just about Linux. It is more than
just software as can be seen in Section III where we conceptualized the F/OSS IPO System.
F/OSS is contributing to the development of different types of software. For example, more than
100,000 F/OSS are available for download at SourceForge.net alone25. F/OSS ranges from
server software (such as network operating systems, database systems, and email and web
severs), to desktop

applications (such as email clients, web browsers, and spreadsheets), to web applications (such
as discussion forum, online surveys, and online content management systems). F/OSS is also
not limited to Linux-based software. Many F/OSS also exist for Windows and other platforms.

MISCONCEPTION 2: F/OSS IS FREE.

F/OSS is free, but not necessarily totally free, depending on how you interpret free. It is a
common misconception that F/OSS is free in the sense that no costs are involved [Viega, 2002]
[Fitzgerald and Kenny, 2003]. As discussed in Section III, the free concept in F/OSS refers more
specifically to freedom: free as in free speech, rather than free beer. F/OSS gives everyone the
freedom to access the source code and redistribute copies. F/OSS also allows organizations and
individuals to control how they use and adapt the source code to suit their business or personal
needs. In the sense of free beer, although most of F/OSS can be redistributed for no cost,
according to the FSF and OSI, nothing prevents a software producer from demanding a fee for
distributing a copy of their software. Some producers may provide licensing for
commercial/business use. Initial acquisition cost varies, from free to some amount. However,
such costs only consist of a small percentage of the TCO, which includes all the costs related to
deploying software, such as cost of installation, hardware configuration, technical support and IT
personnel. It is TCO that should be taken into consideration when evaluating F/OSS costs.

MISCONCEPTION 3: F/OSS IS JUST THE SOFTWARE.

The first thing that might come to many people’s mind when F/OSS is mentioned is software.
They describe F/OSS with statements like, “It’s no big deal; it’s just software.” [Pavlicek, 2003]
However, F/OSS is more than just source code. We need to see the rich and valuable
community, knowledge resource, and the development process and methodologies behind it,
which, if used correctly, can improve product development and innovation. By taking these factors
into consideration, the organization’s role in the creation and use of software is vastly expanded.
As discussed in Section IV, through a community- centered approach or a licensing-centered
approach, organizations can increase their levels of participation and, therefore, maximize the
software’s relative fitness [Maher, 2000].

25 http://www.ostg.com/pdfs/SourceForgeProjects_PR_Final1.pdf

www.manaraa.com

Communications of the Association for Information Systems (Volume 16, 2005) 505-521 779

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

MISCONCEPTION 4: ALL F/OSS ARE CREATED EQUAL

Literature advocating F/OSS often implies that F/OSS approaches would always yield higher
quality products [Williams et al., 2005] [Raymond, 1999a]. As we discussed in Section IV, F/OSS
projects can be of higher quality than their proprietary alternatives because of their development
methodology. Furthermore, for software to benefit from F/OSS development methodologies, a
motivated community should be working on the project and the efforts of the participants should
be well organized and coordinated. However, studies shown that not all F/OSS projects inherit
these practices and characteristics [Crowston and Howison, 2005], and no standard development
process has been established [Scacchi, 2002]. F/OSS projects with different (or even the same)
levels of participation, communication, organization, and control may differ in quality. Therefore, it
will not always be the case that F/OSS projects provide higher quality. Therefore, we advocate
that whatever approach an organization chooses to invest in F/OSS, it needs to evaluate the
characteristics (such as size, knowledge, users, core players, dynamism, and openness) of the
community.

MISCONCEPTION 5: NO SUPPORT OR TRAINING IS AVAILABLE FOR F/OSS.

Technical support is the primary concern of F/OSS users [Wheatley, 2004]. Without a specific
vendor, users worry about who they can ask for help when things go wrong. As we discussed,
many successful F/OSS projects involve a large community of developers, Internet mailing list,
and archives. The breadth of resources available makes F/OSS technical support prompt and
helpful. Many companies, such as Red Hat, built their business models on the support and
training of F/OSS solutions. However, support and training also depends on the size and culture
of the community. These factors, again, suggest that organizations should evaluate the
community before adopting the F/OSS.

VI. CONCLUSION

F/OSS provides the freedom for anyone to acquire source code, inspect, verify, modify, use, and
create derived works. However, it is more than just source code. It is a powerful community of
talented individuals, a development process with different tasks and roles, and a set of software
licenses. When evaluating F/OSS solutions, all four of these components need to be considered.

 F/OSS is changing the way companies develop, acquire, and manage software at every level,
from operating systems to applications. Business managers should evaluate open-source
alternatives to proprietary software to explore the potential opportunities F/OSS may bring to
business. Managers should also understand how to benefit from F/OSS and realize the
challenges to determine which approach is more suited for their company’s needs.

It is our hope that this tutorial will become a useful resource for managers to better understand
the open-source movement, its components, its benefits, and the challenges of the different
F/OSS approaches. We do not believe that this movement will abate. Its metamorphosis over
the coming years will be fascinating.

ACKNOWLEDGEMENTS

We gratefully acknowledge Aaron Malcom and the anonymous reviewer for providing valuable
insights and helpful suggestions.

Editor’s Note: This article was received on July 16, 2005. It was with the authors for two revisions.
It was published on November __, 2005.

www.manaraa.com

780 Communications of the Association for Information Systems (Volume 16, 2005) 756-784

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

REFERENCES

EDITOR’S NOTE: The following reference list contains the address of World Wide Web pages.
Readers who have the ability to access the Web directly from their computer or are reading the
paper on the Web, can gain direct access to these references. Readers are warned, however,
that

1. these links existed as of the date of publication but are not guaranteed to be
working thereafter.

2. the contents of Web pages may change over time. Where version information
is provided in the References, different versions may not contain the information
or the conclusions referenced.

3. the authors of the Web pages, not CAIS, are responsible for the accuracy of
their content.

4. the authors of this article, not CAIS, are responsible for the accuracy of the
URL and version information.

5. Date of last accessed is shown in parentheses at the end of the reference

Bezroukov, N. (1999) "Open Source Software Development as a Special Type of Academic
Research (Critique of Vulgar Raymondism)," First Monday (4) 10.

Bonaccorsi, A. and C. Rossi (2003a) Licensing Schemes in the Production and Distribution of
Open Source Software. An Empirical Investigation, in Free/Open Source Research
Community.

Bonaccorsi, A. and C. Rossi (2003b) "Why Open Source Software Can Succeed," Research
Policy (32) 7, pp. 1243-1258.

Cockburn, A. (2002) Agile Software Development. Boston, MA: Addison-Wesley.
Cox, A. (1998) "Cathedrals, Bazaars and the Town Council," Slashdot, http://slashdot.org/

features/98/10/13/1423253.shtml (June 19th, 2005).
Crowston, K., H. Annabi, and R. Heckman. (2004) A Structurational Model of the Dynamics of

Free/Libre. Presentation at the IFIP WG 8.2 OASISWorkshop, Washington, DC, 2004.
Crowston, K. and J. Howison (2005) "The Social Structure of Free and Open Source Software

Development," First Monday (10) 2.
Dahlander, L. and M. G. Magnusson (2005) "Relationships between Open Source Software

Companies and Communities: Observations from Nordic Firms," Research Policy (34) 4,
pp. 481-493.

Feller, J. and B. Fitzgerald (2002) Understanding Open Source Software Development. London,
UK: Addison-Wesley.

Fitzgerald, B. and T. Kenny. (2003) Open Source Software in the Trenches: Lessons from a
Large-Scale Oss Implementation. 24th International Conference on Information Systems,
2003.

Fowler, M. (2003) "The New Methodology," http://martinfowler.com/articles/newMethodology.html
(May 20th, 2005).

Gacek, C., T. Lawrie, and B. Arief (2001) "The Many Meanings of Open Source," Interdisciplinary
Research Collaboration in Dependability, Technical Report 1, http://www.dirc.org.uk/
publications/techreports/papers/1.pdf.

Gedda, R. (2005) "Lack of Developers Delays Openoffice.Org," Computer World April, 20.
German, D. M. (2003) "The Gnome Project: A Case Study of Open Source, Global Software

Development," Software Process Improvement and Practice (8)pp. 201-205.
Glass, R. L. (2004) "A Look at the Economics of Open Source," Communications of the ACM (47)

2, pp. 25-27.
Grantham, T. (1999) "An Open Source of Business Opportunities," Computer Dealer News Feb 5.

www.manaraa.com

Communications of the Association for Information Systems (Volume 16, 2005) 505-521 781

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

Hein, G. (2004) "Open Source Software: Risks and Rewards," ECAR Symposium,
http://www.educause.edu/ir/library/pdf/ECR0405.pdf.

Hertel, G., S. Niedner, and S. Herrmann (2003) "Motivation of Software Developers in Open
Source Projects: An Internet-Based Survey of Contributors to the Linux Kernel,"
Research Policy (32) 7, pp. 1159-1177.

Hickman, A. (2004) "How Do You Decide If Oss Works for You?" Nonprofit Open Source
Initiative, http://www.nosi.net/node/27.

Hipple, E. V. and R. Katz (2002) "Shifting Innovation to Users Via Toolkits," Management Science
(48) 7, pp. 821-833.

Hissam, S., C. B. Weinstock, D. Plakosh, and J. Asundi. (2001) Perspectives on Open-Source
Software. Software Engineering Institute,Carnegie Mellon University, Technical Report
CMU/SEI-2001-TR-019.

Johnson, K. (2001) A Descriptive Process Model for Open-Source Software Development,
University of Calgary.

Jorgensen, N. (2001) "Putting It All in the Trunk, Incremental Software Development in the
Freebsd Open Source Project," Information Systems Journal (11)pp. 321-336.

Kogut, B. and A. Metiu (2001) "Open Source Software Development and Distributed Innovation,"
Oxford Review of Economic Policy (17) 2, pp. 248-264.

Krishnamurthy, S. (2002) "Cave or Community? An Empirical Examination of 100 Mature Open
Source Projects," First Monday (7) 6.

Lakhani, K. R. and B. Wolf (2005) Why Hackers Do What They Do: Understanding Motivation
Effort in Free/Open Source Software Projects, in J. Feller, B. Fitzgerald, S. Hissam, and
K. R. Lakhani (Eds.) Perspectives on Free and Open Source Software, Cambridge, MA:
MIT Press.

Lakhani, K. R., B. Wolf, J. Bates, and C. DiBona (2002) "The Boston Consulting Group Hacker
Survey," http://www.bcg.com/opensource/BCGHackerSurveyOSCON24July02v073.pdf.

Lee, G. K. and R. E. Cole (2003) "From a Firm-Based to a Community-Based Model of
Knowledge Creation: The Case of the Linux Kernel Development," Organization Science
(14) 6.

Lee, S. H. (1999) "Open Source Software Licensing," http://cyber.law.harvard.edu/openlaw/
gpl.pdf.

Lerner, J. and J. Tirole (2002) "Some Simple Economics of the Open Source.," The Journal of
Industrial Economics (2) L, pp. 197-234.

Lerner, J. and J. Tirole (2002a) "Some Simple Economics of the Open Source.," The Journal of
Industrial Economics (2) L, pp. 197-234.

Levesque, M. (2004) "Fundamental Issues with Open Source Software Development," First
Monday (9) 4.

Lussier, S. (2004) "New Tricks: How Open Source Changed the Way My Team Works," IEEE
Software (21) 1, pp. 68- 72.

Maher, M. (2000) "Open Source Software: The Success of an Alternative Intellectual Property
Incentive Paradigm," Fordham Intellectual Property, Media & Entertainment Law Journal
(2000) Spring.

McGowan, D. (2001) "Legal Implications of Open Source Software," University of Illinois Law
Review, (2001) 1, pp. 241.

Mockus, A., R. Fielding, and J. Herbsleb (2002) "Two Case Studies of Open Source Software
Development: Apache and Mozilla," ACM Transactions on Software Engineering and
Methodology (11) 3, pp. 309–346.

Moon, J. and L. Sproull (2000) "Essence of Distributed Work: The Case of the Linux Kernel," First
Monday (5) 11.

Moreira, C. F. (2002) "Malaysia's Open Source Push," Aldrix News, http://www.aldrich.com.my
/modules.php?name=News&file=print&sid=129.

O'Reilly, T. (1999) "Lessons from Open-Source Software Development," Communications of the
ACM (42) 4, pp. 33-37.

Orr, K. (1998) "Data Quality and Systems Theory," Communications of the ACM (41) 2, pp.66-71.
Pavlicek, R. (2003) Open Source Perspective: The Significance of Open Source, in Processor,

vol. 25, pp. 7.

www.manaraa.com

782 Communications of the Association for Information Systems (Volume 16, 2005) 756-784

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

Raymond, E. S. (1999a) A Brief History of Hackerdom, in 1st edition C. DiBona, S. Ockman, and
M. Stone (Eds.) Open Sources, Cambridge, MA: O'Reilly.

Raymond, E. S. (1999b) "The Case of the Quake Cheats," http://www.catb.org/~esr/writings/
quake-cheats.html (June 30th, 2005).

Raymond, E. S. (1999c) The Cathedral & the Bazaar Musings on Linux and Open Source by an
Accidental Revolutionary, 1st ed. edition. Cambridge, MA: O'Reilly.

Raymond, E. S. (2000) "Revenge of the Hackers," http://www.catb.org/~esr/writings/cathedral-
bazaar/hacker-revenge/ (Sep 1st, 2005).

Reijswoud, V. and C. Topi (2003) "Alternative Routes in the Digital World: Open Source Software
in Africa," Free/Open Source Research Community Online Paper, http://opensource.mit.
edu/papers/reijswoudtopi.pdf.

Scacchi, W. (2001) Software Development Practices in Open Software Development
Communities. 1st Workshop on Open Source Software Engineering, Toronto, Ontario.,
2001.

Scacchi, W. (2002) "Understanding the Requirements for Developing Open Source Software
Systems," IEEE Software (149) 1, pp. 24-39.

Scacchi, W. (2004) "Free and Open Source Development Practices in the Game Community,"
IEEE Software (21) 1, pp. 59- 66.

Stafford, J. (2004) "Evaluate Open Source, or Else," SearchEnterpriseLinux.com,
http://searchenterpriselinux.techtarget.com/qna/0,289202,sid39_gci999458,00.

Stevenson, R. (2005) Study Shows Microsoft, Linux Costs Neck-and-Neck, in Reuters.
Surman, M. and J. Diceman (2004) "Choosing Open Source: A Guide for Civil Society

Organizations," http://www.commons.ca/articles/fulltext.shtml?x=335#benefits.
Viega, J. a. B. F. (2002) "Dispelling Myths About the Gpl and Free Software," Cyberspace Policy

Institute, http://www.cpi.seas.gwu.edu/oss/cpi_rebuttal.pdf.
Wayner, P. (2000) Free for All. New York: HarperCollins.
West, J. (2003) "How Open Is Open Enough? Melding Proprietary and Open Source Platform

Strategies," Research Policy (32) 7, pp. 1259-1285.
West, J. and S. Gallagher (2004a) Key Challenges of Open Innovation:Lessons from Open

Source Software.
West, J. and S. Gallagher (2004b) "Key Challenges of Open Innovation:Lessons from Open

Source Software," http://www.cob.sjsu.edu/WEST_J/Papers/WestGallagher2004.pdf.
West, J. and S. O'Mahony. (2005) Contrasting Community Building in Sponsored and Community

Founded Open Source Projects. Annual Hawai'i Internationa Conference on System
Sciences, Waikoloa, Hawaii, 2005.

Wheatley, M. (2004) "The Myths of Open Source," CIO Magazine March 1st.
Wheeler, D. (2005), http://www.dwheeler.com/oss_fs_eval.html.
Williams, J., P. Clegg, and E. Dulaney (2005) The Advantages of Adopting Open Source

Software, in Expanding Choice: Moving to Linux and Open Source with Novell Open
Enterprise Server: Novell Press.

Wong, K. and P. Sayo. (2004) Free/Open Source Software: A General Introduction. United
Nations Development Programme, Asia-Pacific Development.

APPENDIX I. RECOMMENDED READING RESOURCES

Free Software Foundation and Richard Stallman
• http://www.fsf.org
• Stallman, R. (2002) “Free Software, Free Society: Selected Essays of Richard Stallman”,

Gay, J. (ed.), Boston, MA: Free Software Foundation GNU Press
• Williams, S. (2001) “Free as in Freedom: Richard M. Stallman’s Crusade for Free Software”,

San Francisco,CA: O’Reilly Press. This is a biography of RMS.

Open Source Initiative and Eric Raymond
• http://www.opensource.org

www.manaraa.com

Communications of the Association for Information Systems (Volume 16, 2005) 505-521 783

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

• http://www.catb.org/~esr (includes a section from the Cathedral and Bazaar and various
writings by Eric Raymond)

F/OSS Research
• http://opensource.mit.edu
• http://www.isr.uci.edu/research-open-source.html
• http://floss.syr.edu/
• http://www.firstmonday.org/
• http://opensource.ucc.ie/

Web resources for F/OSS
• http://www.dwheeler.com
• http://opensource.oreilly.com/

F/OSS news
• http://slashdot.org/
• http://www.newsforge.com/

APPENDIX II: A SAMPLE OF ESTABLISHED F/OSS PROJECTS

Project Brief Description URL

Redhat A premier Linux and open source
provider. http://www.redhat.com/

SourceForge.net F/OSS development websites.
Contain various projects. http://sourceforge.net/index.php

Freashmeat.net F/OSS development websites.
Contain various projects. http://freshmeat.net/

OSDir.com F/OSS development websites.
Contain various projects. http://osdir.com/

BerliOS.com F/OSS development websites.
Contain various projects. http://berlios.com

Apache Software
Foundation Support various Apache projects http://www.apache.org/

FireFox Internet browser, which has more
than 80 million users http://www.mozilla.org/products/firefox/

OpenOffice
Similar to Windows Office.
Compatible with all other major office
suites.

http://www.openoffice.org/

Knoppix

A bootable Live system on CD or
DVD, consisting of a representative
collection of GNU/Linux software. It
enables you to run Linux without
installing anything on harddisk.

http://www.knopper.net/knoppix/index-
en.html

Blender

The software for 3D modeling,
animation, rendering, post-
production, interactive creation and
playback

http://blender3d.org/cms/Home.2.0.html

Php

A widely-used general-purpose
scripting language that is especially
suited for Web development and can
be embedded into HTML.

http://www.php.net/

Python

An object-oriented programming
language…running on many brands
of UNIX, on Windows, OS/2, Mac,
Amiga, and many other platforms

http://python.org/

VideoLAN Video streaming software http://www.videolan.org/

Voip-info VOIP applications software http://www.voip-info.org/wiki-
Open+Source+VOIP+Software

www.manaraa.com

784 Communications of the Association for Information Systems (Volume 16, 2005) 756-784

Open Source: Concepts, Benefits, and Challenges by M. AlMarzoug, L. Zheng, G. Rong, and V. Grover

Compiere ERP software with integrated CRM
solutions http://www.compiere.org/

GRASS GIS

A Geographic Information System
(GIS) used for geospatial data
management and analysis, image
processing, graphics/maps
production, spatial modeling, and
visualization

http://grass.itc.it/

Claroline An e-Learning application based on
PHP/MySQL http://www.claroline.net/

GnuCash
Accounting software, to track bank
accounts, stocks, income and
expenses.

http://www.gnucash.org/

Sakai

Similar to Blackboard, the software
for developing a new Collaboration
and Learning Environment (CLE) for
higher education.

http://www.sakaiproject.org/

R Statistical computing software, similar
to S-Plus/SAS/SPSS. http://www.r-project.org/

ABOUT THE AUTHORS

Mohammad AlMarzouq is a Ph.D. Candidate in the MIS track of the Department of Management
at Clemson University. His research interests include knowledge management, project
management, and software development with a particular interest in F/OSS.

Varun Grover is the William S. Lee (Duke Energy) Distinguished Professor of IS at the College of
Business & Behavioral Sciences, Clemson University. He has published extensively in the IS
field, with three books and over 150 publications in refereed journals. His current research
focuses on the impact and effectiveness of IS at the organizational and market levels. Five
recent articles have ranked him among the top five researchers based on publications in top IS
journals over the past decade. His work has appeared in journals such as ISR, MISQ, JMIS,
CACM, Decision Sciences, IEEE Transactions, California Management Review, among others.
He is currently a Senior Editor for JAIS, MISQ (2006) and Database; Associate Editor for a JMIS,
JOM, and IJEC and on the Board of Editors of numerous others.

Guang Rong is a Ph.D. candidate in the MIS track of the Department of Management at
Clemson University. Her research interests include knowledge management, IT workforce, and IT
valuation.

Copyright © 2005 by the Association for Information Systems. Permission to make digital or hard copies of
all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and full citation on
the first page. Copyright for components of this work owned by others than the Association for Information
Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or fee. Request permission to publish
from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-mail from
ais@aisnet.org.

www.manaraa.com

ISSN: 1529-3181
EDITOR-IN-CHIEF

Paul Gray
Claremont Graduate University

AIS SENIOR EDITORIAL BOARD
Jane Webster
Vice President Publications
Queen’s University

Paul Gray
Editor, CAIS
Claremont Graduate University

Kalle Lyytinen
Editor, JAIS
Case Western Reserve University

Edward A. Stohr
Editor-at-Large
Stevens Inst. of Technology

Blake Ives
Editor, Electronic Publications
University of Houston

Reagan Ramsower
Editor, ISWorld Net
Baylor University

CAIS ADVISORY BOARD
Gordon Davis
University of Minnesota

 Ken Kraemer
Univ. of Calif. at Irvine

M.Lynne Markus
Bentley College

Richard Mason
Southern Methodist Univ.

Jay Nunamaker
University of Arizona

Henk Sol
Delft University

Ralph Sprague
University of Hawaii

Hugh J. Watson
University of Georgia

CAIS SENIOR EDITORS
Steve Alter
U. of San Francisco

Chris Holland
Manchester Bus. School

Jaak Jurison
Fordham University

Jerry Luftman
Stevens Inst.of Technology

CAIS EDITORIAL BOARD
Tung Bui
University of Hawaii

Fred Davis
U.ofArkansas, Fayetteville

Candace Deans
University of Richmond

Donna Dufner
U.of Nebraska -Omaha

Omar El Sawy
Univ. of Southern Calif.

Ali Farhoomand
University of Hong Kong

Jane Fedorowicz
Bentley College

Brent Gallupe
Queens University

Robert L. Glass
Computing Trends

Sy Goodman
Ga. Inst. of Technology

Joze Gricar
University of Maribor

Ake Gronlund
University of Umea,

Ruth Guthrie
California State Univ.

Alan Hevner
Univ. of South Florida

Juhani Iivari
Univ. of Oulu

Claudia Loebbecke
University of Cologne

Michel Kalika
U. of Paris Dauphine

Munir Mandviwalla
Temple University

Sal March
Vanderbilt University

Don McCubbrey
University of Denver

Michael Myers
University of Auckland

Seev Neumann
Tel Aviv University

Dan Power
University of No. Iowa

Ram Ramesh
SUNY-Buffalo

Kelley Rainer
Auburn University

Paul Tallon
Boston College

Thompson Teo
Natl. U. of Singapore

Doug Vogel
City Univ. of Hong Kong

Rolf Wigand
U. of Arkansas,LittleRock

Upkar Varshney
Georgia State Univ.

Vance Wilson
U.of Wisconsin,Milwaukee

Peter Wolcott
U. of Nebraska-Omaha

Ping Zhang
Syracuse University

DEPARTMENTS
Global Diffusion of the Internet.
Editors: Peter Wolcott and Sy Goodman

Information Technology and Systems.
Editors: Alan Hevner and Sal March

Papers in French
Editor: Michel Kalika

Information Systems and Healthcare
Editor: Vance Wilson

ADMINISTRATIVE PERSONNEL
Eph McLean
AIS, Executive Director
Georgia State University

Reagan Ramsower
Publisher, CAIS
Baylor University

	Communications of the Association for Information Systems
	November 2005

	Open Source: Concepts, Benefits, and Challenges
	Mohammad AlMarzouq
	Li Zheng
	Guang Rong
	Varun Grover
	Recommended Citation

	Microsoft Word - Journal.doc

